
L1VM - JIT-compiler
by Stefan Pietzonke

http://midnight-coding.de
11. July 2023

Abstract

In this paper I will show how my JIT-compiler in the L1VM works. It uses the libasmjit
library for compiling the bytecode into machine code.

1 Intro

The L1VM has 256 registers for int64 and double numbers. So even the most complicated math
calculations can be done by them. The bytecode is translated by the libasmjit library. You have
to mark the beginning and the end of the code which is compiled into machine code. This is done
by inserting labels in the program. You can find examples in my jit-test programs.

1.1 The opcodes
The following opcodes can be compiled by the JIT-compiler:

addi, subi, muli, divi
addd, subd, muld, divd
andi, ori, bandi, bori, bxori
eqi, neqi, gri, lsi, greqi, lseqi
eqd, neqd, grd, lsd, greqd, lseqd

jmp, jmpi

movi, movd

2 The JIT-compiler

The JIT-compiler function jit_compiler does an initialization of the labels and CPU registers at
start. Then it compiles the bytecode in a loop. It first checks if there is a label at current bytecode
position. And then inserts the label if needed. Then the opcode is translated into the assembly
code. If the opcode is not in the list then the JIT-compiler exits with an error. If an opcode was
found and translated the run_jit variable is set to 1 to mark it as compiled.

2.1 The saving of the assembly code
At the end of the JIT-compiler the code is saved if the run_jit variable is set to 1. Here is the
code part: https://github.com/koder77/l1vm/blob/master/libjit/jit.cpp

if (run_jit)
{

a.ret (); // return to main program code

// printf ("JIT_code_ind: %lli\n", JIT_code_ind);

if (JIT_code_ind < MAXJITCODE - 1) // JIT_code_ind overflow fix!!
{

// create JIT code function

1

JIT_code_ind++;

Func funcptr;

// store JIT code:
Error err = rt.add (&funcptr, &jcode);
if (err == 1)
{

printf ("JIT compiler: code generation failed!\n");
return (1);

}

JIT_code[JIT_code_ind].fn = (Func) funcptr;
JIT_code[JIT_code_ind].used = 1;
#if DEBUG

printf ("JIT compiler: function saved.\n");
#endif

return (0);
}
else
{

printf ("JIT compiler: error jit code list full!\n");
return (1);

}
}
return (0);

2.2 The run of the code
The compiled code is run by the run_jit function:

extern "C" int run_jit (S8 code ALIGN, struct JIT_code *JIT_code)
{

#if DEBUG
printf ("run_jit: code: %lli\n", code);

#endif

if (code < 0 || code >= MAXJITCODE)
{

printf
("JIT compiler: FATAL ERROR! code index %lli out of range!!!\n", code);

return (1);
}

if (JIT_code[code].used == 0)
{

printf
("JIT compiler: FATAL ERROR! code index %lli not compiled!\n", code);

return (1);
}

Func func = JIT_code[code].fn;

#if DEBUG

2 Section 2

printf ("run_jit: code address: %lli\n", (S8) func);
#endif

if (func == NULL)
{

printf ("JIT compiler: FATAL ERROR! NULL pointer code!!!\n");
return (1);

}

// call JIT code function, stored in JIT_code[]
JIT_code[code].fn();
return (0);

}

2.3 The cleanup
The generated code is freed by the free_jit_code function at program end:

extern "C" int free_jit_code (struct JIT_code *JIT_code, S8 JIT_code_ind)
{

/* free all JIT code functions from memory */

S4 i;

if (JIT_code_ind > -1)
{

for (i = 0; i <= JIT_code_ind; i++)
{

rt.release((Func *) JIT_code[i].fn);
}

}

return (0);
}

2.4 Summary
As it can be seen the JIT-compiler is not difficult to understand. If you know how the needed
assembly is used. I did use the 64 bit assembly opcodes in the JIT-compiler. So there are no 32
bit opcodes used. The most difficult part was the binding between the VM bytecode and the JIT-
compiler opcodes assembly code. I also did contact the author of libasmjit, he could help me by
my code. If you have any questions you can write me: spietzonke@gmail.com. I hope this short
paper was useful.

The JIT-compiler 3

	1 Intro
	1.1 The opcodes

	2 The JIT-compiler
	2.1 The saving of the assembly code
	2.2 The run of the code
	2.3 The cleanup
	2.4 Summary

